Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Indian J Ophthalmol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454859

RESUMO

Artificial Intelligence (AI) is a revolutionary technology that has the potential to develop into a widely implemented system that could reduce the dependence on qualified professionals/experts for screening the large at-risk population, especially in the Indian scenario. Deep learning involves learning without being explicitly told what to focus on and utilizes several layers of artificial neural networks (ANNs) to create a robust algorithm that is capable of high-complexity tasks. Convolutional neural networks (CNNs) are a subset of ANNs that are particularly useful for image processing as well as cognitive tasks. Training of these algorithms involves inputting raw human-labeled data, which are then processed through the algorithm's multiple layers and allow CNN to develop their own learning of image features. AI systems must be validated using different population datasets since the performance of the AI system would vary according to the population. Indian datasets have been used in AI-based risk model that could predict whether an infant would develop treatment-requiring retinopathy of prematurity (ROP). AI also served as an epidemiological tool by objectively showing that a higher ROP severity was in Neonatal intensive care units (NICUs) that did not have the resources to monitor and titrate oxygen. There are rising concerns about the medicolegal aspect of AI implementation as well as discussion on the possibilities of catastrophic life-threatening diseases like retinoblastoma and lipemia retinalis being missed by AI. Computer-based systems have the advantage over humans in not being susceptible to biases or fatigue. This is especially relevant in a country like India with an increased rate of ROP and a preexisting strained doctor-to-preterm child ratio. Many AI algorithms can perform in a way comparable to or exceeding human experts, and this opens possibilities for future large-scale prospective studies.

2.
Nat Protoc ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396041

RESUMO

Phylogenetic trees are a powerful means to display the evolutionary history of species, pathogens and, more recently, individual cells of the human body. Whole-genome sequencing of laser capture microdissections or expanded stem cells has allowed the discovery of somatic mutations in clones, which can be used as natural barcodes to reconstruct the developmental history of individual cells. Here we describe Sequoia, our pipeline to reconstruct lineage trees from clones of normal cells. Candidate somatic mutations are called against the human reference genome and filtered to exclude germline mutations and artifactual variants. These filtered somatic mutations form the basis for phylogeny reconstruction using a maximum parsimony framework. Lastly, we use a maximum likelihood framework to explicitly map mutations to branches in the phylogenetic tree. The resulting phylogenies can then serve as a basis for many subsequent analyses, including investigating embryonic development, tissue dynamics in health and disease, and mutational signatures. Sequoia can be readily applied to any clonal somatic mutation dataset, including single-cell DNA sequencing datasets, using the commands and scripts provided. Moreover, Sequoia is highly flexible and can be easily customized. Typically, the runtime of the core script ranges from minutes to an hour for datasets with a moderate number (50,000-150,000) of variants. Competent bioinformatic skills, including in-depth knowledge of the R programming language, are required. A high-performance computing cluster (one that is capable of running mutation-calling algorithms and other aspects of the analysis at scale) is also required, especially if handling large datasets.

3.
Cell Genom ; 4(2): 100484, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38232733

RESUMO

The epigenetic landscape of cancer is regulated by many factors, but primarily it derives from the underlying genome sequence. Chromothripsis is a catastrophic localized genome shattering event that drives, and often initiates, cancer evolution. We characterized five esophageal adenocarcinoma organoids with chromothripsis using long-read sequencing and transcriptome and epigenome profiling. Complex structural variation and subclonal variants meant that haplotype-aware de novo methods were required to generate contiguous cancer genome assemblies. Chromosomes were assembled separately and scaffolded using haplotype-resolved Hi-C reads, producing accurate assemblies even with up to 900 structural rearrangements. There were widespread differences between the chromothriptic and wild-type copies of chromosomes in topologically associated domains, chromatin accessibility, histone modifications, and gene expression. Differential epigenome peaks were most enriched within 10 kb of chromothriptic structural variants. Alterations in transcriptome and higher-order chromosome organization frequently occurred near differential epigenetic marks. Overall, chromothripsis reshapes gene regulation, causing coordinated changes in epigenetic landscape, transcription, and chromosome conformation.


Assuntos
Adenocarcinoma , Cromotripsia , Neoplasias Esofágicas , Humanos , Haplótipos , Cromatina , Genoma , Adenocarcinoma/genética
4.
Nat Med ; 29(12): 3175-3183, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973947

RESUMO

Gene therapy (GT) provides a potentially curative treatment option for patients with sickle cell disease (SCD); however, the occurrence of myeloid malignancies in GT clinical trials has prompted concern, with several postulated mechanisms. Here, we used whole-genome sequencing to track hematopoietic stem cells (HSCs) from six patients with SCD at pre- and post-GT time points to map the somatic mutation and clonal landscape of gene-modified and unmodified HSCs. Pre-GT, phylogenetic trees were highly polyclonal and mutation burdens per cell were elevated in some, but not all, patients. Post-GT, no clonal expansions were identified among gene-modified or unmodified cells; however, an increased frequency of potential driver mutations associated with myeloid neoplasms or clonal hematopoiesis (DNMT3A- and EZH2-mutated clones in particular) was observed in both genetically modified and unmodified cells, suggesting positive selection of mutant clones during GT. This work sheds light on HSC clonal dynamics and the mutational landscape after GT in SCD, highlighting the enhanced fitness of some HSCs harboring pre-existing driver mutations. Future studies should define the long-term fate of mutant clones, including any contribution to expansions associated with myeloid neoplasms.


Assuntos
Anemia Falciforme , Neoplasias , Humanos , Hematopoese/genética , Filogenia , Mutação/genética , Células-Tronco Hematopoéticas/patologia , Células Clonais , Anemia Falciforme/genética , Anemia Falciforme/terapia , Anemia Falciforme/patologia , Terapia Genética , Neoplasias/patologia
5.
Nat Genet ; 55(11): 1892-1900, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884686

RESUMO

Somatic mutations are hypothesized to play a role in many non-neoplastic diseases. We performed whole-exome sequencing of 1,182 microbiopsies dissected from lesional and nonlesional epidermis from 111 patients with psoriasis to search for evidence that somatic mutations in keratinocytes may influence the disease process. Lesional skin remained highly polyclonal, showing no evidence of large-scale spread of clones carrying potentially pathogenic mutations. The mutation rate of keratinocytes was similarly only modestly affected by the disease. We found evidence of positive selection in previously reported driver genes NOTCH1, NOTCH2, TP53, FAT1 and PPM1D and also identified mutations in four genes (GXYLT1, CHEK2, ZFP36L2 and EEF1A1) that we hypothesize are selected for in squamous epithelium irrespective of disease status. Finally, we describe a mutational signature of psoralens-a class of chemicals previously found in some sunscreens and which are used as part of PUVA (psoralens and ultraviolet-A) photochemotherapy treatment for psoriasis.


Assuntos
Furocumarinas , Psoríase , Humanos , Ficusina/uso terapêutico , Terapia PUVA , Psoríase/tratamento farmacológico , Psoríase/genética , Psoríase/patologia , Furocumarinas/uso terapêutico , Mutação
6.
Nat Commun ; 14(1): 5092, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608017

RESUMO

Clonal tracking of cells using somatic mutations permits exploration of clonal dynamics in human disease. Here, we perform whole genome sequencing of 323 haematopoietic colonies from 10 individuals with the inherited ribosomopathy Shwachman-Diamond syndrome to reconstruct haematopoietic phylogenies. In ~30% of colonies, we identify mutually exclusive mutations in TP53, EIF6, RPL5, RPL22, PRPF8, plus chromosome 7 and 15 aberrations that increase SBDS and EFL1 gene dosage, respectively. Target gene mutations commence in utero, resulting in a profusion of clonal expansions, with only a few haematopoietic stem cell lineages (mean 8, range 1-24) contributing ~50% of haematopoietic colonies across 8 individuals (range 4-100% clonality) by young adulthood. Rapid clonal expansion during disease transformation is associated with biallelic TP53 mutations and increased mutation burden. Our study highlights how convergent somatic mutation of the p53-dependent nucleolar surveillance pathway offsets the deleterious effects of germline ribosomopathy but increases opportunity for TP53-mutated cancer evolution.


Assuntos
Cromossomos Humanos Par 7 , Células Germinativas , Humanos , Adulto Jovem , Adulto , Dosagem de Genes , Células-Tronco Hematopoéticas , Mutação
12.
Nat Genet ; 55(2): 246-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702998

RESUMO

APOBEC mutational signatures SBS2 and SBS13 are common in many human cancer types. However, there is an incomplete understanding of its stimulus, when it occurs in the progression from normal to cancer cell and the APOBEC enzymes responsible. Here we whole-genome sequenced 342 microdissected normal epithelial crypts from the small intestines of 39 individuals and found that SBS2/SBS13 mutations were present in 17% of crypts, more frequent than most other normal tissues. Crypts with SBS2/SBS13 often had immediate crypt neighbors without SBS2/SBS13, suggesting that the underlying cause of SBS2/SBS13 is cell-intrinsic. APOBEC mutagenesis occurred in an episodic manner throughout the human lifespan, including in young children. APOBEC1 mRNA levels were very high in the small intestine epithelium, but low in the large intestine epithelium and other tissues. The results suggest that the high levels of SBS2/SBS13 in the small intestine are collateral damage from APOBEC1 fulfilling its physiological function of editing APOB mRNA.


Assuntos
Apolipoproteínas B , Citidina Desaminase , Criança , Humanos , Pré-Escolar , Apolipoproteínas B/genética , Citidina Desaminase/genética , Mutagênese/genética , RNA Mensageiro/genética , Desaminase APOBEC-1/genética , Intestino Delgado
15.
Cancer Cell ; 40(12): 1583-1599.e10, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423636

RESUMO

Tumor behavior is intricately dependent on the oncogenic properties of cancer cells and their multi-cellular interactions. To understand these dependencies within the wider microenvironment, we studied over 270,000 single-cell transcriptomes and 100 microdissected whole exomes from 12 patients with kidney tumors, prior to validation using spatial transcriptomics. Tissues were sampled from multiple regions of the tumor core, the tumor-normal interface, normal surrounding tissues, and peripheral blood. We find that the tissue-type location of CD8+ T cell clonotypes largely defines their exhaustion state with intra-tumoral spatial heterogeneity that is not well explained by somatic heterogeneity. De novo mutation calling from single-cell RNA-sequencing data allows us to broadly infer the clonality of stromal cells and lineage-trace myeloid cell development. We report six conserved meta-programs that distinguish tumor cell function, and find an epithelial-mesenchymal transition meta-program highly enriched at the tumor-normal interface that co-localizes with IL1B-expressing macrophages, offering a potential therapeutic target.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Transcriptoma , Perfilação da Expressão Gênica , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Transição Epitelial-Mesenquimal , Microambiente Tumoral/genética , Análise de Célula Única
16.
Nature ; 612(7940): 495-502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450981

RESUMO

Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.


Assuntos
Reparo do DNA , Anemia de Fanconi , Genômica , Neoplasias de Cabeça e Pescoço , Humanos , Aldeídos/efeitos adversos , Aldeídos/metabolismo , Reparo do DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Infecções por Papillomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Dano ao DNA/efeitos dos fármacos
18.
Nature ; 611(7936): 594-602, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352222

RESUMO

Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour1-3. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive4,5. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Evolução Clonal , Células Clonais , Genômica , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Evolução Clonal/genética , Células Clonais/metabolismo , Células Clonais/patologia , Mutação , Microambiente Tumoral/genética , Sequenciamento Completo do Genoma , Transcriptoma , Reprodutibilidade dos Testes , Microdissecção , Algoritmos
19.
Nat Commun ; 13(1): 4272, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953478

RESUMO

Germ cell tumours (GCTs) are a collection of benign and malignant neoplasms derived from primordial germ cells. They are uniquely able to recapitulate embryonic and extraembryonic tissues, which carries prognostic and therapeutic significance. The developmental pathways underpinning GCT initiation and histogenesis are incompletely understood. Here, we study the relationship of histogenesis and clonal diversification in GCTs by analysing the genomes and transcriptomes of 547 microdissected histological units. We find no correlation between genomic and histological heterogeneity. However, we identify unifying features including the retention of fetal developmental transcripts across tissues, expression changes on chromosome 12p, and a conserved somatic evolutionary sequence of whole genome duplication followed by clonal diversification. While this pattern is preserved across all GCTs, the developmental timing of the duplication varies between prepubertal and postpubertal cases. In addition, tumours of younger children exhibit distinct substitution signatures which may lend themselves as potential biomarkers for risk stratification. Our findings portray the extensive diversification of GCT tissues and genetic subclones as randomly distributed, while identifying overarching transcriptional and genomic features.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Criança , Genômica , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Transcriptoma/genética
20.
Nat Med ; 28(8): 1662-1671, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35953718

RESUMO

Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high-B cell receptor (BCR)low-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Transformação Celular Neoplásica/genética , Progressão da Doença , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...